

K7 Cyber Threat Prediction Report

2026

Table of Contents

Chapter 1: Introduction: The Evolving Cybersecurity Landscape	3
Chapter 2: 2026 Threat Landscape, Key Projections and Trends	6
Trend 1: The Ransomware Economy & Crime-as-a-Service (CaaS)	6
Trend 2: The Weaponization of AI: Hyper-Personalized Social Engineering	9
Trend 3: The Road Ahead: Autonomous Attacks	11
Trend 4: Compromised Supply Chain & Geopolitical Cyber Warfare	14
Trend 5: Advanced Persistent Threats (APT) & Hybrid Warfare	16
Trend 6: Cloud/Identity Attacks	18
Trend 7: Operational Technology (OT) & IoT Threats	19
Trend 8: Zero-Day and Insider Threat Acceleration	21
Chapter 3: The Enterprise vs. SMB Divide: A Tale of Two Realities	22
Chapter 4: Strategic Mitigation & The Path Forward	27

Chapter 1: Introduction: The Evolving Cybersecurity Landscape

1.1 Executive Summary: 2026 Cybersecurity Outlook

The cybersecurity landscape is undergoing significant change, driven by adversaries operating with the efficiency of modern businesses. This report provides actionable insights into the key threats shaping 2026, enabling you to shift from reactive defenses to proactive strategies. Using data from government, academic, and independent research, we deliver focused, data-driven intelligence to help you stay ahead.

The trends are clear: threats are becoming more sophisticated and accessible. The rise of Crime-as-a-Service (CaaS) models means organizations of any size can fall victim. Meanwhile, artificial intelligence is being weaponized to create hyper-realistic social engineering campaigns that bypass traditional defenses. These are not future concerns, they are active, growing threats that demand immediate attention.

This report outlines the most pressing challenges facing both large enterprises and small businesses, offering a practical roadmap with strategic recommendations to build robust cyber resilience. By adopting these strategies, you can transform your security posture into a competitive advantage.

1.2 Purpose and Scope: Preparing for Tomorrow's Threats

This report aims to equip you with the clarity and foresight needed to navigate the evolving cybersecurity landscape of 2026. We go beyond sensational headlines, providing a balanced and practical view of emerging risks and their real-world implications.

For example, ransomware recovery costs now average **\$1.5 million**^[5]^[17], often ten times the ransom amount. Additionally, only **30% of organizations** regularly test their incident response plans^[139], leaving critical vulnerabilities unaddressed. These insights are grounded in real-world activity, ensuring our forecasts are actionable and reliable.

This report is designed for decision-makers across all levels, from executives of large enterprises to small business owners. It offers clear, actionable guidance tailored to a range of organizational needs.

1.3 Cybersecurity as a Strategic Advantage

In today's digital economy, cybersecurity is no longer just a technical concern, it is a fundamental business priority. A strong security posture builds trust, safeguards revenue, and drives innovation, while failure to adapt to evolving threats can result in severe consequences. Over half of organizations that suffer major breaches lose more than **5%** of annual revenue due to a single incident.

Cyberattacks are becoming more sophisticated, with AI enabling attackers to generate 30 phishing templates per hour[17][12]. Employees face a 60% susceptibility rate to these advanced threats[17], highlighting the need for a proactive security approach. Reactive methods are no longer sufficient. Organizations must adopt predictive intelligence, forward-looking security architectures, and resilience as core components of their business strategies.

This report provides the tools and insights to help you make this critical shift. It is your guide to protecting your organization and thriving amidst the challenges of 2026 and beyond.

1.4 What This Report Answers

This report addresses the critical questions keeping security leaders and business owners awake at night:

- What will most likely drive major cyber incidents in 2026?
- Which sectors face the highest risk from emerging threats?
- How are AI and CaaS models accelerating attack sophistication and scale?
- What factors determine whether an organization will become a victim or a survivor?
- How should enterprises and SMBs adapt their security investments and culture to counter these changes?
- What measurable actions can strengthen cyber resilience before 2026 arrives?

1.5 Key Findings

- **AI and Automation Intensify Attacks:** Threat actors now use artificial intelligence to automate phishing, malware, and social engineering, producing up to 30 phishing templates per hour[12][17].
- **Crime-as-a-Service Widens the Net:** CaaS platforms make advanced ransomware and intrusion tools accessible to even low-skilled attackers, fueling a 431% surge in supply chain incidents in recent years[23].
- **Human Error Still Prevails:** Human factors remain pivotal, with 88% of breaches caused by mistakes, lapses, or social engineering[17].
- **Ransomware Costs Escalate:** Average ransomware recovery costs have reached \$1.5 million, often dwarfing ransom payments themselves[17].
- **Testing and Awareness Gaps:** Only 30% of organizations regularly test their incident response plans, leaving many ill-prepared for inevitable breaches [24].
- **Cloud Misconfigurations Are Rampant:** 99% of cloud breaches are traced to customer-side errors, not provider shortcomings[24].
- **Workforce Shortage Is Worsening:** A global shortfall of 4 million cybersecurity professionals strains organizational readiness and slows the adoption of new controls [21].

1.6 Key Predictions

- By the end of 2026, over **80%** of organizations will be impacted by at least one ransomware or supply chain incident.
- Cloud misconfigurations will account for roughly **9 in 10** cloud security breaches annually.
- Human-targeted phishing enabled by AI will surpass traditional techniques, contributing to an estimated **60%** employee click-through rate by late 2026.
- The global cybersecurity workforce gap will exceed **4.5 million** open roles, intensifying competition for specialized talent.
- Enterprises adopting zero-trust architectures will experience a **50%** reduction in lateral movement incidents by Q4 2026.

1.7 High-Level Recommendations

Table: Top Recommendations by Audience

Audience	Action Item
Enterprises	MFA & backup validation, exec briefings, zero-trust
SMBs	MFA, endpoint, backups, MSSP, culture of reporting
Boards/CISOs	Risk oversight, ROI accountability, threat sharing

Chapter 2: 2026 Threat Landscape, Key Projections and Trends

Understanding Tomorrow's Cybercriminals

To build a future-ready defense, you need to see the whole picture, not just the headlines. Today's threat actors are agile, persistent, and well-organized, operating like agile businesses that adapt in real time. This chapter pulls together robust research and the latest independent statistics to give you an actionable, vendor-neutral snapshot of the changing attack landscape. Are you ready to meet tomorrow's adversaries head-on?

2026 will be defined by hyper-sophisticated cybercrime operations, expanding threat vectors, and the rise of industrialized attacks. Proactive, predictive defense is your new imperative.

Trend 1: The Ransomware Economy & Crime-as-a-Service (CaaS)

Snapshot

Ransomware is no longer a niche threat; it's a business model fueling a multi-billion-dollar crime industry. What began as simple locking malware has matured into an entire ecosystem where specialists collaborate as affiliates, developers, and infrastructure operators. Driven by the explosion of Ransomware-as-a-Service (RaaS) and Phishing-as-a-Service (PhaaS) platforms, today's attacks are mass-produced, professionally negotiated, and specifically designed to maximize leverage on enterprises and SMBs alike.

Why does this trend matter right now?

In 2026, ransomware is the single most disruptive cyber risk facing organizations. It hits critical sectors, manufacturing, healthcare, finance, causing daily service outages, regulatory fines, and irreparable brand damage. Not only are attacks rising in number, but the size and complexity of average incidents are escalating. As more organizations hold digital assets and sensitive data, recovery is more expensive, and failures can cascade through supply chains and national infrastructure.

Evidence and Stats

Ransomware's prevalence is made evident by a rapidly growing body of statistics:

- **\$1M average ransom payout (2025):** Up 23% since 2022, reflecting a perception that instant payment saves time and business loss[16][17].
- **\$1.5M average recovery cost:** Forensic, legal, and lost productivity costs multiply the impact[16].
- **6,046 public ransomware victims (2024–2025):** 25% YoY increase; 76% of firms projected to face ransomware in 2026[16][17].
- **Sectors at risk:** Manufacturing (17%), healthcare (10.6%), technology (10%), and finance (8%) saw the most attacks[16][17].
- **Small businesses:** Those with \$1–\$8M revenue are targeted as **ideal victims**, big enough to pay, but not enough to fend off attacks[16][17].

Sector	% of Attacks
Manufacturing	17%
Healthcare	10.6%
Technology	10%
Finance	8%

In 2025, a global healthcare provider paid millions to restore access after ransomware spread through its outsourced IT provider, taking dozens of hospitals offline and exposing sensitive patient records.

How This Trend is Evolving

The ransomware ecosystem has fragmented. Significant law enforcement takedowns shattered centralized groups, giving rise to splinter groups and agile, harder-to-trace operators. Sophisticated **affiliate programs** and dark web **app stores** allow anyone, from advanced hackers to amateurs, to buy attack kits, negotiation bots, and ready-built phishing campaigns.

Extortion tactics have grown aggressive, attackers routinely exfiltrate data, threaten public leaks, orchestrate DDoS attacks, and contact regulators directly.

We are observing a shift in **Threat Agent** tactics: financially motivated actors are moving away from direct organizational attacks and focusing on **Supply Chain Compromise**. By targeting **Third-Party Service Providers (MSPs)**, they are achieving **Mass-Propagation** across downstream client networks, magnifying the impact of single breaches. And as offensive tooling grows cheaper and easier, new actors emerge from regions far outside historic hotspots, evading law enforcement efforts.

The ransomware crisis no longer follows old IT boundaries. Boardrooms now see these attacks as existential business threats that require executive-level prevention and cross-departmental resilience.

2026 Prediction & What It Means for Defenders

By the end of 2026, over three-quarters of organizations worldwide are expected to experience ransomware, and average incidents will cost both direct payouts and weeks of business degradation. Crime-as-a-service models, which have been around since 2000, pushing FakeAV, and shifted to ransomware in the last decade, will drive further innovation, with smaller, global attacker syndicates launching campaigns that are more rapid and harder to attribute.

What's Next for Ransomware?

- **Fragmentation:** Law enforcement action splinters big groups into dozens of smaller, more nimble players.
- **Decentralization:** Dark web forums and encrypted chat channels replace public sites, keeping operations agile and out of reach.
- **Supply chain targeting:** A single compromised vendor can infect thousands downstream, ransomware is going viral.
- **Geographic Diversity:** New groups emerge worldwide to evade pressure from any single country's authorities.

Organizations that treat ransomware as an IT problem, not a board-level business risk, will face crisis after crisis. Prevention starts at the top.

Key So What for Defenders:

- **CISOs must own ransomware at the board level:** Prevention, not just incident response, is now a strategic imperative.
- **Double/triple extortion is standard:** Defenses must consider data leaks, DDoS, reputational risk, and supply chain impact, not just file recovery.
- **Third-party risk is ransomware risk:** Vet critical suppliers like your own network.
- **Automated recovery** and both technical and executive tabletop exercises are a must.
- **Narrative for business leadership:** Build resilience, assume attacks will get through, and plan to recover without paying criminals.

Trend 2: The Weaponization of AI: Hyper-Personalized Social Engineering

Snapshot

AI-driven cyberattacks are rapidly democratizing high-impact crime. With machine-generated phishing, voice and video deepfakes, and polymorphic malware, criminals now wield automated, personalized deception at scale.

Tools like ChatGPT, open-source LLMs, and custom fraud bots have redefined the cost and scale of fraud, making hyper-convincing attacks accessible to anyone, including novice cybercriminals. In 2026, AI's capacity to mimic senior leaders, automate fake invoice schemes, and bombard staff with custom phishing will erode traditional safeguards. For organizations, this means social engineering attacks that blend seamlessly into real conversations, surpassing human ability to distinguish **real** from **fake**, and tipping the odds heavily in favor of attackers who move at machine speed.

Evidence and Stats

AI's impact on social engineering is visible in numbers:

- **80%** of phishing attacks now use AI tools[17][12].
- LLM-powered phishing campaigns produce **30+** unique templates per hour[17][13].
- **60%** of recipients fall for AI-crafted phishing, tenfold increase in effectiveness[17][12].
- **10x** increase in deepfakes for wire fraud, blackmail, and brand damage[14][15].
- **97% of companies faced internal security exposures (such as data poisoning or leakage via public AI models)**[17][13].
- **43% of organizations suffering financial impact from deepfake campaigns**[17][12].

Attack Vector	2023	% of Attacks
Phishing (AI)	23% of cases	80% of cases
Deepfakes	Limited use	10x increase
Success rate	<10%	60%

A UK engineering firm lost \$25 million in minutes after an AI-generated deepfake video convinced finance staff to wire funds.

How This Trend is Evolving

The AI threat has evolved across multiple dimensions in just the last one-to-two years:

- Attackers are industrializing **voice and video deepfakes**. With a few minutes of public speaking audio or panel footage, criminals can produce perfect CEO or CFO impersonations, tricking staff into sharing sensitive data or greenlighting wire transfers.
- Phishing bots now scan internal org charts, email chains, and social posts, allowing for fully tailored outreach that matches style, terminology, and even personal news. These adaptive AI models learn from every failed attempt to continually improve their success rate.
- AI-driven **malware** simplifies automated obfuscation by dynamically rewriting **script-based payloads** (like PowerShell or Python) for each target, generating unique file hashes that evade static signatures and mimic polymorphism without complex binary engineering.
- Small and mid-sized businesses are disproportionately affected: 71% rate their cybersecurity as immature, 32% lack proper security technology, and **three-quarters** have no incident response plan at all.[17]

The proliferation of generative AI as a service (AlaaS) on dark web forums means attackers don't need their own talent, they can subscribe to a criminal toolkit that does everything from reconnaissance to execution.

Of particular concern: criminals cross-reference company data on public platforms, correlate it with internal leaks, and precisely target their attacks at the most vulnerable individuals.

Scams look real, voices sound authentic, and seeing is believing just got weaponized. If you doubt it, just ask the engineering firm that lost \$25 million to a video deepfake of its own C-suite.

2026 Prediction & What It Means for Defenders

By the end of 2026, up to a third of all successful breaches will show clear evidence of AI involvement. Self-propagating malware, AI-crafted attacks, and deepfake-driven scams will continue to multiply, pushing CISOs to respond faster and automate more defensive controls.

Why Small Businesses Are Most at Risk

- Only **29%** rate their own security as mature[17].
- **32%** lack any proper cybersecurity technology[17].
- **20%** run with zero dedicated protection[17].
- **75%** have no incident response plan at all[17].

Attackers can launch at scale. For as little as a monthly subscription, the criminal's toolkit does all the work, meaning SMBs are becoming the favorite target for high-volume, low-resistance attacks.

Defensive Priorities:

- Layer technical anti-phishing and deepfake detection alongside education.
- Deploy behavioral AI to monitor anomalies in payments, logins, and communication.
- Mandate multi-factor for all money movement and sensitive operations.
- Pursue comprehensive, ongoing user awareness, but supplement with automation and analytics.
- Communicate that **seeing is not believing**, assume business communications can be convincingly faked.

Trend 3: The Road Ahead: Autonomous Attacks

Snapshot

The cybersecurity landscape is bracing for a revolution in the form of autonomous, AI-driven attacks. These are not simply AI-assisted threats, but campaigns in which malware handles target selection, exfiltrates data, and even cleans up evidence, without human oversight. By leveraging machine learning and adaptive algorithms, cybercriminals can now create and launch attacks that **think** for themselves, mutating tactics mid-campaign to maximize damage and evade detection.

In 2026, the most pressing business risk is that traditional playbooks will fail against this scale and automation. Attacks evolve faster than response plans can adapt, and both the frequency and impact of incidents are trending up. Already, evidence is emerging that the next wave of security breaches will be driven not just by smarter attackers, but by semi- or fully-autonomous, self-improving attack platforms.

Evidence and Stats

Several key data points highlight the surge in autonomous attacks:

- 16% of 2025 breaches involved AI attackers; forecasts see **25–35%** in 2026[5][11].
- Autonomous malware is capable of self-directing attacks, choosing the most vulnerable targets, exfiltrating data, and self-erasing evidence after completion.
- Self-propagating campaigns now jump across supply chains, cloud environments, and IoT networks largely unaided by humans.
- AI-driven attacks can adapt exploitation tactics in real time, focusing on systems that yield the highest value for lowest risk.
- Average dwell time for these sophisticated threats is dropping as technology automates both penetration and lateral movement.

Metric	2025 Rate	2026 Projection
% of breaches involving AI	16%	25–35%
Prevalence of automated malware	Moderate	High
Supply chain/IoT leapfrogging	Increasing	Accelerating

In late 2025, a multinational manufacturer detected a breach only after AI malware had disabled alarms, mapped the network, extracted proprietary blueprints, then wiped logs and self-deleted, all with zero direct human input.

How This Trend is Evolving

Autonomous attacks are maturing rapidly. Early AI-driven threats were reliant on pre-set scripts, but current forms are self-learning and increasingly able to adapt on the fly. Today's malware can change its command and control channels, morph signatures, and even conduct sandbox evasion without direction from its creator. In many campaigns, reconnaissance, privilege escalation, and exfiltration are handled by AI modules that "decide" next steps based on evolving network defenses.

The emergence of autonomous offensive frameworks has shifted the risk equation. Defenders now face attacks that:

- Mutate infrastructure to avoid threat intelligence feeds.
- Jump between cloud, on-premises, and IoT devices autonomously.
- Assemble "kill chains" dynamically from open-source attack modules.
- Execute lateral movement and data theft without human error.

As attackers experiment with AI for **living off the land** attacks, defenders report that legacy anti-virus, traditional firewall rules, and human-centric monitoring all lag behind. Security teams need real-time adaptive defenses, not next-day logs.

2026 Prediction and What It Means for Defenders

By the close of 2026, autonomous cyberattacks will not only comprise a higher portion of incidents but will change the foundational assumptions underpinning defensive strategies. Self-evolving threats will bypass pre-set rules and exploit unseen vulnerabilities, taking advantage of any organization slow to automate detection and response.

How This Trend is Evolving

- Adopt AI-powered, real-time detection and response solutions. Human analysts alone can no longer match attack velocity.
- Automate your own incident response: Integrate playbooks that trigger isolation and containment within seconds, not minutes or hours.
- Expand behavior-based analytics across endpoints, networks, and cloud environments to surface autonomous attacker behavior.
- Exercise scenario drills with **no human in the loop** attack vectors, test if your team and tools are ready for malware that adapts on the fly.
- Prioritize patch management and network segmentation, as autonomous malware will hunt for single unpatched assets to enter and propagate.
- Invest in AI-on-AI defense R&D, be ready to pivot as soon as new frameworks emerge in the attacker ecosystem.

Defensive Priority	Urgency Level
AI-Powered XDR	Critical
Automated Playbooks	Essential
Behavioral Analytics	Must-Have
AI-Adaptive Segmentation	Immediate
Continuous Testing	Strongly Advised

Autonomous attacks twist the rules in real time. Assume machines are fighting machines, and ensure yours are faster and more adaptive.

- 16% of 2025 breaches involve AI attackers, headed for 25–35% in 2026[5][11].
- AI, with human oversight correcting deductive logic flaws, enables threat actors to automate target reconnaissance and script obfuscation, scaling their operations.
- Cross-domain persistence is increasingly demonstrated in attacks, bridging the gap between IT supply chains and downstream OT/IoT environments.

Trend 4: Compromised Supply Chain & Geopolitical Cyber Warfare

Snapshot

Supply chain threats amplify the impact of attackers by turning trusted vendors into attack vectors. From software updates and managed providers to simple credential leakage, adversaries now **attack once, compromise thousands**.

In 2026, this force multiplier will turn supply chain compromises into the top vector for mass-scale breaches and nation-state espionage, blending operational risk with regulatory and reputational exposure.

Evidence and Stats

Key data shows the scale:

- **431%** increase in supply chain attacks (2021–2023)[23].
- **41** supply chain breaches in one month (October 2025); 28/month average in mid-2025[23].
- Nearly half of third-party breaches hit tech/software suppliers[2][23].
- 1 in 4 organizations will be directly impacted by 2026[17].
- 29% of data breaches now involve third parties[17].
- 60% of procurement teams require cybersecurity due diligence today[17].

Breach Statistic	Value
Year-over-year rise	431% (2021-23)
% hitting tech/software	46.75%
Monthly breaches (Oct' 25)	41
Companies affected	1 in 4
Due diligence required	60%

In early 2025, a single cloud misconfiguration at an Oracle health tech provider exposed records for millions of people, affecting dozens of downstream hospitals and clinics.

How Supply Chains Are Compromised

- **Software updates:** Malicious code injected during routine updates (e.g., SolarWinds incident, impacted 18,000 organizations).
- **Managed service providers:** One breached MSP gives access to hundreds or thousands of clients
- **Credential leaks:** Insecure vendor databases provide attackers entry to downstream customers.
- **Cloud misconfiguration:** Loose IAM roles or exposed cloud storage give attackers cross-tenant access.
- **Supply chain ransomware:** Gangs like Qilin, Akira, and RansomHub are targeting vendors' cloud infrastructure by breaching cloud-hosted CI/CD pipelines or MSP admin consoles to deploy malicious payloads as 'trusted' updates, bypassing local defenses.

Supply Chain Attacks Are the Single Largest Breach Vector

One compromise can paralyze an entire industry. If you don't know your vendors' security posture, you're one click away from the next headline.

Major 2025 Incident Snapshots

- **Oracle Cloud heist:** 6 million healthcare records compromised via a single misconfigured cloud environment.
- **Qilin ransomware:** Healthcare cloud service vendor breached; 50+ hospitals compromised as collateral damage.
- **Developer tools as vectors:** Malicious NPM or PIP packages directly corrupt build artifacts, while compromised IDE extensions attack developer identity, stealing credentials to impersonate trusted users.

The Geopolitical Dimension

Nation-state actors are using supply chains to position themselves for future kinetic and economic warfare, not just theft.

- **Volt Typhoon (China):** Pre-positioned in energy, water, and communications using vendor links.
- **SolarWinds (Russia):** US government and multiple private firms infiltrated for long-term espionage and disruption.
- **Lazarus Group (North Korea):** Cryptocurrency theft and supply-chain breaches fund the national weapons programme.

2026 Prediction & What It Means for Defenders

By 2026, the vast majority of organizations will require ongoing, not just annual, third-party risk assessments as a board-level requirement. Many governments and regulators will mandate supply chain due diligence with teeth, including financial penalties for missed disclosures.

What Security Leaders Should Do:

- Operationalize continuous **vendor security audits**, not checkbox questionnaires.
- Prioritize visibility into the software bill of materials (**SBOM**) and incident detection in third-party environments.
- Integrate supply chain risk into **enterprise risk management**, treat it as unavoidable, not avoidable.
- Establish **breach response drills** assuming a supplier-origin threat.
- Collaboration is now critical: join industry ISACs and public-private partnerships.

Practically defined, a supply chain compromise occurs when a threat actor infiltrates a supplier's delivery mechanism, enabling cascading attacks downstream to customers. Treating this Inherited Risk as inevitable is now best practice, with EU and US regulators requiring strict due diligence on inbound software and service pipelines.

Trend 5: Advanced Persistent Threats (APT) & Hybrid Warfare

Snapshot

Advanced Persistent Threats are coordinated, stealthy, and increasingly intertwined with geopolitical conflict. Unlike smash-and-grab cyberattacks, APTs aim for enduring infiltration, achieving intelligence gathering, sabotage, or economic damage over months or years. Today's actors, often state-backed teams, don't just steal data; they position quietly for potential real-world crises.

Why does this matter in 2026?

APT groups now routinely target government, health, energy, and finance. With dwell times as long as **204** days in certain regions, they can paralyze key sectors and trigger systemic disruption. Private companies, especially those pivotal to national infrastructure, are now on the digital front lines of global conflict.

Evidence and Stats

Illustrative APT metrics:

- **18.9%** rise in APT activity since 2022[6].
- Volt Typhoon was embedded in US infrastructure for **5+ years** before discovery [9].
- Median dwell time: **204 days** in APAC, **71 days** in Americas, 177 days in EMEA[8].
- **79%** of state-backed attacks target public-sector and allied organizations[10].
- **Top sectors:** Energy, public works, defense, and health service operators.

Multiple governments discovered deeply embedded code in operational control systems, traceable to state-affiliated groups that had lain dormant for years before being activated during a diplomatic crisis.

How This Trend is Evolving

APTs are growing more patient, shifting from immediate data theft to long-term **pre-positioning**. Attackers leverage supply chain, cloud, and even physical access to lay untraceable groundwork, sometimes for years. The use of social engineering, custom tooling, and new zero-day exploits (rarely used due to cost) makes detection more challenging.

Countries now blend cyber and physical operations in hybrid campaigns, targeting government agencies, infrastructure, and their suppliers to sow confusion or prepare for kinetic attacks. Law enforcement and diplomacy alike are ramping up efforts, but attribution remains challenging.

2026 Prediction & What It Means for Defenders

Expect operational technology and critical service providers to see more nation-backed probing and sleeper malware ready to **go live** in conflict situations. Boards should treat APT risk as part of business continuity planning, not just as an information security issue.

What Security Leaders Should Do:

- Invest in endpoint detection/response and long-term SIEM analytics.
- Red-team regularly with APT-specific playbooks, test detection and response for stealthy, multi-stage intrusions.
- Coordinate with national CERTs and industry ISACs. Share threat intel where possible.
- Assume a long-term compromise and an instrument for lateral movement detection.
- Revisit incident response to integrate hybrid risk scenarios (e.g., cyber-physical, PR, and legal).

Trend 6: Cloud/Identity Attacks

Snapshot

Cloud and identity-based attacks exploit the shift to digital and remote operations. Cloud adoption means data, identities, and services reside outside of traditional controls. In 2026, more than 90% of breaches will involve either cloud resources or stolen credentials, making cloud misconfiguration (such as loose IAM roles, identity compromise), or exposed cloud storage, the leading root causes of serious incidents.

Evidence and Stats

Critical cloud/identity stats:

- **99%** of cloud breaches are traced to customer misconfiguration[25][26].
- **44%** of cloud alerts are tied to identity weaknesses[26].
- **600 million** identity attacks per day across major providers[4][25].
- **76%** of firms have MFA, but gaps remain, especially among SMBs [17][20].
- **99%** of cloud identities are over-privileged[25][26].

Measure	Value
Cloud breaches (misconfig)	99%
Cloud/login alerts (identity)	44%
Identity attacks/day	600 million

A SaaS provider's admin account, left without MFA, was hijacked, granting criminals system-wide access to all hosted clients, resulting in weeks of downtime and breach notifications.

How This Trend is Evolving

Both attackers and organizations have grown more sophisticated. Adversaries increasingly exploit weak identity management (e.g., abandoned credentials, overprivileged accounts, lack of step-up authentication) to move laterally and access sensitive records. Phishing kits and credential marketplaces have grown, enabling attackers to bypass legacy perimeter defenses.

Organizations are catching up by automating identity governance, enforcing least privilege, and tightening access reviews, but skill gaps and resource constraints limit SMB progress. Cloud tool adoption is up, but security is lagging: many businesses remain at high risk from both benign mistakes and malicious access.

2026 Prediction & What It Means for Defenders

By year-end 2026, cloud misconfiguration and identity compromise will remain the No. 1 cause of breaches. Automated tooling, improved IAM controls, and widespread MFA coverage will reduce frequency, but human error and insider threats will persist.

What Security Leaders Should Do:

- Automate checks for misconfigurations and privilege creep.
- Mandate MFA, including for cloud service accounts and APIs.
- Regularly audit for unused and over-privileged accounts.
- Use behavior analytics for identity-based anomaly detection.
- Close the loop: Patch known cloud/IAM flaws, retrain teams, and enforce clear security ownership.

Trend 7: Operational Technology (OT) & IoT Threats

Snapshot

With more organizations connecting physical environments to digital networks, OT and IoT represent new, under-defended terrain for attackers. Operational technologies, critical infrastructure, manufacturing, and utilities normally run decades-old systems with basic security. IoT devices multiply the attack surface, with many never updated or secured.

In the 2026 landscape, threat actors will increasingly glean reconnaissance data on factories, hospitals, and city operations, which are considered viable targets for both financial and geopolitical gain.

OT/IoT threat trends:

- **46%** YoY surge in ransomware attacks on operational tech networks[27].
- **80%** YoY jump in attacks on utilities and energy[28].
- **820,000** IoT attacks daily (46% annual growth)[27].
- **1M+** exposed healthcare IoT devices found in the wild[29].
- Nearly half of all industrial connections come from poorly segmented networks or vulnerable IoT devices.
- **48.2%** of industrial traffic stems from high-risk devices[30].

Threat Metric	Value
OT ransomware surge (annual)	99%
Utility attacks surge (annual)	44%
Daily IoT attack attempts	820,000
Healthcare IoT exposed devices	1M+

An energy provider experienced a blackout after attackers accessed unpatched industrial control systems via third-party IoT cameras, triggering cascading failures across the grid.

How This Trend is Evolving

OT/IoT attackers now combine ransomware, DDoS, and wiper malware to achieve greater impact; disruptions are timed to significant geopolitical events for maximum leverage. Many IoT attacks begin with credential leaks or poor segmentation, allowing attackers to pivot between IT and OT. Regulatory pressure is growing: energy, healthcare, and utilities face tighter mandates for segmentation, monitoring, and rapid patching. Yet legacy equipment and resource constraints slow upgrades.

2026 Prediction & What It Means for Defenders

Expect mounting attacks on OT and IoT, with **killware** and **wiper** campaigns on the rise. Industrial targets must layer basic cyber hygiene (patching, segmentation) with proactive monitoring and partner with industry-specific ISACs.

What Security Leaders Should Do:

- Map, segment, and monitor all industrial devices.
- Patch and update even “unpatchable” endpoints with virtual controls.
- Establish incident response partnerships with vendors and industry peers.
- Deploy continuous network monitoring, especially at boundaries between IT and OT.
- Build scenario plans for regulatory response and downstream service restoration.

Trend 8: Zero-Day and Insider Threat Acceleration

Vulnerabilities Weaponized at Lightning Speed

- **331** zero-day vulnerabilities (CVSS 10.0) identified in 2024 on the dark web ranging from a few hundred dollars to millions (2024)[3]
- More than half with proof-of-concept code, one-third with working exploits
- Average time from disclosure to attack: just **5.4 days**
- **97 billion** exploitation attempts recorded in a single year

Patching within 24 - 48 hours is the new gold standard. But blind patching is not the answer. The modern standard requires a Triage-First approach: immediately applying temporary mitigations to critical vulnerabilities, ensuring protection is in place without risking operational disruption from untested updates.

Insider-Driven Breaches Escalate

- **\$17.4M**: Average annual insider risk cost[18]
- **45%** of breaches now involve insiders (accidental or malicious)[18][19]
- Cutting containment time to **<81 days** yields significant savings[18]

Invest in behavioral analytics, user entity analytics, and continuous access monitoring. Detecting a breach from the inside out is harder, but no less non-negotiable as attacker incentives diversify.

Preparing for the Next Wave

Organizations that view cybersecurity as a **technology problem** will be tomorrow's casualties. In 2026, resilience requires boardroom buy-in, regular executive reviews of third-party and AI risks, and proactive investment in defense-in-depth strategies.

If you take only one action from this chapter: Audit your supply chain, stress-test your AI defenses, and assume that advanced crime-as-a-service is targeting you right now. The future favors the prepared.

Chapter 3: The Enterprise vs. SMB Divide: A Tale of Two Realities

Not all organizations face the same cybersecurity challenges. While the threats may be similar, the realities for a large multinational enterprise and a small or medium-sized business (SMB) are vastly different. They may weather the same storm, but they do so in very different boats, each with unique tools, resources, and capabilities.

Recognizing these differences is essential for creating a security strategy that is practical, effective, and tailored to your needs. A defense plan designed for a global corporation would overwhelm a local retailer's budget, while an SMB's security measures would be insufficient for an enterprise.

This chapter offers a focused, data-driven analysis of the distinct cybersecurity challenges facing organizations in 2026.

Key Findings

- **Enterprise Complexity Increases Exposure:** Large organizations struggle with sprawling digital footprints, multi-cloud environments, OT systems, and legacy assets, resulting in median attacker dwell times of up to 204 days. Their attack surface and visibility gaps give adversaries prolonged access for exploitation.
- **Resource Constraints Threaten SMBs:** Over 55% of SMBs lack the resilience to absorb even a \$50,000 cyber incident. Minimal staffing and tight budgets create persistent gaps, putting them at existential risk from otherwise moderate attacks[17].
- **Supply Chain Risk Cuts Both Ways:** Whether through software vendors, managed services, or reliance on ecosystems, both enterprises and SMBs are exposed to third-party compromise. Nearly half of large-scale breaches involve insiders or partners, underscoring the pervasiveness of this vulnerability.
- **Incident Response Gaps Drive Losses:** While only 26% of organizations detect and contain attacks within 1 day, most SMBs lack a formal incident response plan, leading to longer containment periods and higher costs [17][24].
- **Automated Threats Target SMBs:** Automated phishing, commodity ransomware, and credential theft persist as top threats. Basic missteps, poor password hygiene, or an absent MFA drive the majority of successful incidents in this segment.

- **Nation-State Groups Elevate Enterprise Risk:** Enterprises are between 42% and 58% more likely than SMBs to be targeted by advanced persistent threat actors and nation-state campaigns. Their high-value data and infrastructure continue to attract sophisticated, persistent adversaries[5].
- **Preparedness Gap Is Growing:** Most enterprises can absorb and recover from major incidents thanks to advanced tools and expert teams. In contrast, SMBs experience lower recovery rates and greater business disruption, widening the gulf in real-world outcomes after a breach.

For an enterprise, the biggest fear is not the loud, disruptive attack, but the silent, undetected one. State-sponsored APT groups can remain hidden inside a network for years, as seen with the Volt Typhoon group's 5+ year persistence on U.S. infrastructure. They are not there to steal data today; they are there to control the board for a game that will be played tomorrow.

The Achilles' Heel: Key Vulnerabilities

Despite their massive security budgets and talented teams, large enterprises grapple with inherent vulnerabilities born from their own scale and complexity. These are the weak points that sophisticated adversaries are purpose-built to exploit[1][17].

Core Enterprise Vulnerabilities:

1. **Pervasive visibility gaps** arise from the complexity of an enterprise's infrastructure. Multiple clouds, on-premises systems, IoT devices, and third-party integrations create blind spots where compromises can persist undetected, allowing attackers to dwell for up to 204 days, mapping networks, escalating privileges, and achieving objectives before detection[8].
2. An estimated **99% of cloud identities are over-privileged, granting excessive access**. This creates a superhighway for attackers. Compromising a single over-privileged account allows them to move laterally across the network, accessing sensitive data and systems that should be unreachable[25].
3. Systemic supply chain risk is linked to an enterprise's security. Hundreds or thousands of vendors represent **potential vectors of compromise**. Vetting, monitoring, and managing risk across this vast ecosystem is challenging, and a single weak link can undermine the entire security posture.
4. **Legacy systems** persist in many large organizations. These systems, often decades old, cannot be easily patched or replaced without causing significant operational disruption. As a result, they may harbor known vulnerabilities indefinitely, providing a permanent entry point for attackers.

Core SMB Vulnerabilities:

- 1. Severe Resource Constraints:** This is the fundamental vulnerability that underpins all others. With **55% of SMBs at risk of operational failure from an impact of less than \$50,000**, they simply cannot absorb the financial shock of a significant cyber incident in the way an enterprise can[17]. This financial fragility dictates their entire approach to risk[17].
- 2. Limited or Nonexistent Security Expertise:** The cybersecurity skills gap hits SMBs the hardest. An alarming **32% of SMBs lack proper cybersecurity technology**, and **20% have zero dedicated cybersecurity technology at all**[17]. Their IT staff are typically generalists, not security specialists, and they lack the deep expertise needed to configure, manage, and monitor a modern security stack[21][22].
- 3. Immature Incident Response Capabilities:** When an incident inevitably occurs, most SMBs are completely unprepared. A staggering **75% of SMBs lack a documented incident response plan**[136][139]. This means that when the alarm bells ring, there are no established procedures for containment, evidence preservation, or recovery. The response is chaotic, ad-hoc, and driven by urgency rather than a proven methodology, which almost always makes the situation worse.
- 4. Overwhelming Compliance Complexity:** SMBs are not exempt from the complex web of regulatory requirements. A small e-commerce business that sells to customers in Europe is subject to GDPR. A local clinic must comply with HIPAA. A small shop that processes credit cards must adhere to PCI-DSS. Lacking the resources and legal expertise to navigate these frameworks, many SMBs fall out of compliance, exposing them to significant fines on top of the costs of a breach.

The Preparedness Gap: A Chasm in Capability

The divide between enterprises and SMBs is most stark when you compare their ability to prepare for, detect, and respond to cyber threats. This preparedness gap is not a matter of effort or intent; it is a direct consequence of the vast disparity in resources, expertise, and available technology.

An enterprise typically operates with a large, dedicated security team led by a Chief Information Security Officer (CISO). This team includes specialists like threat hunters, incident responders, security architects, and compliance experts.

They are supported by a multi-million-dollar security budget that enables investment in advanced tooling, continuous training, and access to commercial threat intelligence feeds. Their incident response programs are mature, with well-documented procedures, regular tabletop exercises, and established communication protocols. When a breach occurs, they can often achieve containment within one to seven days.

An SMB, in contrast, often has a single IT person or a small team managing all technology, with security being just one of their many responsibilities[17]. Their security budget may be less than \$100,000 annually, forcing difficult trade-offs between essential tools, training, and personnel. Incident response is typically ad-hoc, with no documented plans or regular testing. Their access to threat intelligence is limited to the basic alerts provided by their security vendors. As a result, when a breach happens, it may take weeks or even months to achieve containment, as they lack the expertise and tools for rapid detection and response.

The data highlights this gap: only **26% of organizations can recognize and respond to an attack in under one day**, and SMBs fall disproportionately into the lower half of that statistic[17].

This disparity in capability translates directly to a disparity in breach outcomes. The average cost of a breach for a large enterprise is now **\$10.22 million** in the United States[5], While a significant sum, it is an event they can typically recover from.

For a small business, the average recovery cost is a more modest **\$120,000**[17], but that figure is often an existential blow. The data shows that **52% of breached businesses lose more than 5% of their annual revenue**, and **15% lose over 10%**[16][17]. An enterprise can absorb that loss. An SMB often cannot[17].

Strategic Implications for 2026

Given these two vastly different realities, a one-size-fits-all approach to cybersecurity is doomed to fail[1][136]. Enterprises and SMBs must adopt tailored strategies that align with their unique threat profiles, vulnerabilities, and capabilities.

Strategic Imperatives for Enterprises:

- 1. Invest Heavily in Threat Intelligence and Proactive Threat Hunting:** Investing in high-quality threat intelligence feeds and building a dedicated threat hunting team that proactively searches for signs of compromise, rather than waiting for automated alerts
- 2. Accelerate the Adoption of a Zero-Trust Architecture:** While adopting quote-to-quote “ZERO TRUST” isn’t possible due to several operational challenges, enterprises must begin adopting its core tenets incrementally, such as identity segmentation and least privilege.
- 3. Elevate Supply Chain Risk Management to an Executive-Level Priority:** Supply chain risk management must become an executive-level priority, complete with mandatory SBOM requirements in procurement contracts and a continuous program of vendor security assessments.
- 4. Develop a Predictive Incident Response Capability:** Conduct advanced tabletop exercises that simulate the specific, sophisticated threat scenarios enterprises might encounter in 2026, such as a multi-stage APT attack or a deepfake-driven fraud attempt.

Strategic Imperatives for SMBs:

For SMBs, the strategic focus must be on operational resilience, ruthless risk prioritization, and cost-effective defense[136][139]. Attempting to defend against every possible threat is a recipe for failure. Instead, they must focus their limited resources on what matters most[17][31].

1. Implementing trusted security software is the essential first step to safeguarding SMBs. It covers workstations, servers, network devices, employee smartphones, and all vital tools.
2. **Enforce** multi-factor authentication (MFA) everywhere possible, implement a rigorous patch management program, and conduct regular, effective **security awareness training for all employees**.
3. Identify the critical systems and data essential to generating revenue, and focus your backup and recovery efforts on them.
4. Partnering with a reputable MSSP gives you access to enterprise-grade threat intelligence, 24/7 monitoring, and expert incident response capabilities at a fraction of the cost of building these capabilities in-house.
5. **Developing and testing a Basic Incident Response Plan** that outlines who to contact, which systems to isolate, and how to communicate in the event of a breach is better than nothing. Develop this basic plan and test it at least annually.
6. **Focus on the Most Probable Threats**, such as ransomware delivered via phishing and Business Email Compromise.

Chapter 4: Strategic Mitigation & The Path Forward

Forecasting threats is an intellectual exercise; stopping them is an operational imperative. While intelligence tells us what is coming, it is **defense-in-depth** that determines whether an organization survives the initial impact. We are shifting the conversation here from prediction to hard, practical execution.

The goal for 2026 isn't just to predict the storm, but to build a shelter that holds. This requires a layered approach in which overlapping controls prevent a failure in one area from cascading into a catastrophic breach. Whether you are steering a multinational enterprise or a lean SMB, the mission remains the same: move from reactive firefighting to proactive resilience.

The Non-Negotiable Core: Universal Baselines

Regardless of size, sector, or budget, certain defensive measures are now fundamental table stakes. These are not **nice-to-haves**. They are the digital bedrock. Without them, advanced tools are effectively useless.

Identity Governance: The New Perimeter

The days of trusting a simple password are dead. With 99% of identity attacks leveraging compromised passwords, relying on them is negligence. The modern perimeter is **identity**.

- **Universal MFA is Mandatory:** Multi-Factor Authentication (MFA) must be everywhere. Not just for remote access, but for internal admin portals, cloud platforms, and email. Rolling this out can drop account compromise rates by over 99%.
- **Go Phishing-Resistant:** SMS codes are better than nothing, but they are vulnerable. Move toward FIDO2/U2F hardware keys or app-based push notifications (like Microsoft or Google Authenticator) for high-value targets.
- **Privileged Access Management (PAM):** Administrators should not have permanent “God mode” access. Use Just-In-Time (JIT) elevation so privileges exist only when needed and are revoked when the task is complete.

Speed Kills: Patch Management

In 2024, the average time-to-exploit for a known vulnerability shrank to just **5.4 days**. If you are on a monthly patching cycle, you are already too slow.

- **Automate the Criticals:** Critical and high-severity patches need to be deployed within 24-48 hours. Automation is the only way to achieve this scale.

- **Zero-Day Protocol:** When a patch isn't available, you need a **break-glass** plan, temporarily disabling the vulnerable service or immediately tightening firewall rules.

The Human Firewall

Technology fails. People make mistakes. **88%** of incidents trace back to human error, but treating employees as liabilities is a mistake. You must train them to be sensors.

- **Simulate to Educate:** Monthly phishing simulations are far more effective than annual PowerPoint slides. Measure who clicks, who reports, and who ignores.
- **Psychological Safety:** Create a culture where reporting a mistake is praised, not punished. If an employee clicks a link, you want them to call IT instantly, not hide it out of fear.

The Safety Net: Immutable Backups

Ransomware has evolved; **96%** of attacks now target backup repositories first to force payment.

- **The 3-2-1 Rule:** Keep three copies of data, on two different media types, with one offsite.
- **Immutability:** Ensure your backups are “write-once, read-many.” This prevents malware from encrypting or deleting your recovery points. If your backups are connected to the main network with standard admin credentials, they are not safe.

Enterprise Tactics: Managing Scale and Complexity

Large organizations face a different beast: the complexity of sprawl and the attention of nation-state actors. Here, the focus shifts to containment and hunting.

Zero Trust Architecture

The **castle and moat** model: soft inside, hard outside, is obsolete. **Zero Trust** assumes the breach has already happened. It requires continuous verification for every user and device whenever they touch a resource. By segmenting the network extensively, you ensure that if an attacker compromises a marketing laptop, they cannot laterally move to the engineering database.

Proactive Threat Hunting

Waiting for a SIEM alert means the adversary is already comfortable. Mature enterprises deploy **Threat Hunting** teams, elite analysts who scour logs and endpoints looking for the “unknown unknowns.” They don’t wait for bells to ring; they assume the intruder is present and go looking for the smoke. This proactive stance can shave weeks, sometimes months, off attacker dwell time.

5.3 The SMB Playbook: High Impact on a Budget

Small businesses often face enterprise-level threats with a fraction of the resources. The key here isn’t to buy everything, but to buy the right things in the right order.

The Tiered Investment Model:

- 1. Tier 1 (The First \$50k):** Stop the bleeding. Secure email gateways, universal MFA, Endpoint Detection and Response (EDR) on every laptop, and air-gapped backups.
- 2. Tier 2 (Next \$50k):** Network segmentation, automated patching rigs, and a Managed Security Service Provider (MSSP) retainer for when things go wrong.
- 3. Tier 3 (Maturity):** SIEM integration and 24/7 eyes-on-glass monitoring.

5.4 The Cultural Pivot: From Reaction to Resilience

For decades, cybersecurity has been treated as a tax on the business, a cost center fueled by fear. This model is broken. In the 2026 landscape, waiting for a breach to justify a budget is a suicide pact.

We must shift from a **Reactive Model**, where budget spikes only after a crisis, to a **Proactive Model**. In this future state, security is a business enabler. It builds customer trust and ensures operational uptime.

- **Reactive:** “How did this happen?” (Post-mortem focus).
- **Proactive:** “How do we stay resilient?” (Strategic focus).

This requires the C-Suite to stop asking “Are we secure?” (a binary impossibility) and start asking “How quickly can we recover?”

5.5 Conclusion: The Imperative of Execution

As we look toward 2026, the data paints a stark picture. Cybercrime is on track to cost the global economy \$12 trillion. We face industrialized ransomware cartels, supply chain weaponization, and a talent gap of 4 million professionals.

But if there is one takeaway from this analysis, it is this: Complexity is not the biggest enemy. Neglect is.

The organizations that will be devastated in 2026 are not necessarily the ones lacking the latest AI-driven defense bot. They are the ones who missed the basics.

- They are the companies that get Ransomware because they didn't test their backups.
- They are the enterprises that were breached because they left a test server unpatched for 6 months.
- They are the firms that lose millions because they didn't enforce MFA on a vendor portal.

The path forward does not require magic. It requires discipline. It requires the relentless, boring execution of foundational controls.

Your Immediate Next Steps:

- **Audit:** ruthlessly assess your current posture against the Tier 1 controls above.
- **Prioritize:** Fix the unpatched vulnerabilities and MFA gaps this week.
- **Engage:** Put cyber risk on the Board agenda as a business risk, not an IT ticket.

The threat landscape of 2026 is inevitable. Your victimhood is not. The choice is yours.

References:

- [1] <https://www.cbt Nuggets.com/blog/technology/security/cybersecurity-threat-landscape>
- [2] <https://www.uscis institute.org/cybersecurity-insights/blog/top-8-cybersecurity-trends-to-watch-out-in-2026>
- [3] <https://thequantuminsider.com/2024/03/13/quantum-cybersecurity-explained-comprehensive-guide/>
- [4] <https://www.linkedin.com/pulse/how-can-iot-enhance-threaten-critical-infrastructure-security-dxgyc>
- [5] <https://www.fortinet.com/resources/cyberglossary/multi-cloud-security>
- [6] <https://deepstrike.io/blog/supply-chain-attack-statistics-2025>
- [7] <https://www.fortinet.com/resources/cyberglossary/supply-chain-attacks>
- [8] <https://www.armosec.io/blog/software-supply-chain-security/>
- [9] <https://insurtechdigital.com/news/qbe-ransomware-to-surge-40-as-attackers-weaponise-ai>
- [10] <https://www.weforum.org/publications/global-cybersecurity-outlook-2025/>
- [11] <https://www.fortinet.com/resources/cyberglossary/iot-device-vulnerabilities>
- [12] <https://www.crn.com/news/security/2025/why-quantum-computing-threat-will-impact-absolutely-everyone-in-security-experts>
- [13] <https://asimily.com/blog/cybersecurity-awareness-month-2025-key-trends-in-iot-security/>
- [14] <https://www.darkreading.com/endpoint-security/8-active-apt-groups-to-watch>
- [15] <https://www.carson-saint.com/cloud-security-in-2026-are-you-keeping-pace-with-emerging-threats/>
- [16] <https://www.onekey.com/press-release/top-1-cyber-threat-software-supply-chain-attacks-targeting-industry>
- [17] <https://www.vikingcloud.com/blog/cybersecurity-statistics>
- [18] <https://www.dtexsystems.com/newsroom/press-releases/2025-ponemon-insider-threat-report-release/>
- [19] <https://www.kiteworks.com/cybersecurity-risk-management/hidden-enemy-within-decoding-the-2025-ponemon-institute-report-on-insider-threats/>
- [20] Industry Surveys
- [21] Cybersecurity Ventures
- [22] Industry Surveys
- [23] <https://www.spiegel.de/international/germany/hackers-spies-and-contract-killers-how-putin-s-agents-are-infiltrating-germany-a-2cc6c24c-16ac-43d4-97fa-103081414acc>
- [24] <https://www.appsecure.security/blog/cyber-security-statistics-2025>
- [25] <https://intercept.cloud/en-gb/blogs/14-cloud-security-risks-threats-challenges-2025>
- [26] <https://www.cybersecuritydive.com/news/cloud-security-identity-attacks-reliaquest/804621/>
- [27] <https://deepstrike.io/blog/iot-hacking-statistics>
- [28] <https://asimily.com/blog/top-utilities-cyberattacks-of-2025/>
- [29] <https://deviceauthority.com/healthcare-iot-security-breach-2025-why-over-1-million-devices-were-exposed/>
- [30] <https://www.paloaltonetworks.com/blog/network-security/2025-report-exposes-widespread-device-security-risks/>
- [31] <https://www.appsecure.security/blog/cyber-security-statistics-2025>

www.k7computing.com

